# INTRAOPERATIVE ULTRASOUND IN NEUROSURGERY

## MYTHS

- Image Quality: ?inferior to MR
- Minimally invasive surgery incompatible: ?need for bigger craniotomies
- No use at end of surgery?, decline in image quality
- US interpretation ?difficult than MR

## History

- French et al. 1950
  (A Mode experimental studies on brain tumor)
- Leksell- 1954 , SDH localization, later Echoencephalogram
- Wild and Reid 1978



## Image Buildup

- *Frequency* : High frequency(10MHz)- high resolution, less penetration and vice versa
- *Focus* : Beam narrowing- higher resolution
- *Depth* : Deeper gives more overview.

AIM – to achieve resolution 25 um at 50 MHz

## Machine considerations

- Modes \*ABCD
- Storing features
- Transducers \*
- Financial considerations



## Modes

• A Mode- amplitude mode, depth measurement

Uses:

- Seldom used
- Focused beam for calculi Rx

- B Mode- Brightness mode(real time gray scale display >18fps)
   Uses:
- Real time imaging
- Widely used

## Modes

- C Mode– Color mode

   All moving particles encoded with different red and blue shades
   Velocity and direction
- dependent Uses: Blood flow/vessels detection

 D Mode- Doppler/power/ angio mode

 amplitude of moving structures

 Uses : small/slow flow vessels display

## Terminology

1. Echogenicity

#### Depends on – Reflections of tissue

- Anechogenicity : No echogenicity(ventricle)
- Low Echogenicity: Normal white matter
- High Echogenicity: Glioma
- Hyperechogenicity: calcifications/bone- meningiomas

## Terminology

2. Homogeneity

Homogenous- low grade gliomas Inhomogeneous - high grade glioma

Demarcation
 Infiltrative v/s Non infiltrative tumors and extent of resection.

# Artifacts

#### • BLURRED IMAGE

Source: Bubbles trapped at contact surfaces

- 1. Brain- sheath
- 2. sheath- probe interface

#### • **REVERBERATIONS** Source: brain spatulas,

## • SHADOWING Source: calcifications

• Increased ECHOGENICITY Source: cysts in front of structures

## Transducers

- Linear array and Convex array- Not useful (convex interface and poor resolution)
- Phased array- widely used

<u>BEST- small phased rectangular acoustic lens and</u> <u>area of contact 20-25 mm</u>

#### Transducers- suited in NSx

- Phased array
- Burrhole transducer
- Convex array

## Sterilization

- Not suited
- Sterile sheath to be used

## Getting started



First locate sulci/ interhemispheric fissure to gain orientation

# Applications

- Mass Lesions localization
- Inflammatory and Infectious disorders
- AVM
- Burrhole /guided biopsies
- VP shunt
- Aneurysm
- Neuronavigation

#### MASS LESION LOCALISATION- cranial

- All tumors Hyper echoic, except- cystic components and Lymphoma(iso to hypo echoic)
- Surrounding parenchyma and vasogenic edema

   relatively hypoehoic
- PITFALLS- Chronic edema /radiation changes may change echogenicity. Wrong orientation over gyrus

## Cranial Uses

- Resection control
- To delineate tumor vascularity
- Localizing site for biospy
- Minimally invasive hematoma drainage
- Aspiration of abscess and cysts
- Patency of arterial bypasses

#### MASS LESION LOCALISATION- cranial

• Vascularity assessment- Colour duplex sonography – B mode with color mode

High grade glioma, in relation to vessels

#### **Resection control**

Thalamic tumor in sagittal and coronal planes, with gradual excision. At end of resection residual seen And was resected further to achieve sonograhic total excision

# MASS LESION LOCALISATION - Spinal

#### Normal spine

- Dura: Echogenic ring with surrounding anechoic CSF
- Spinal cord: homogeneous lowlevel echoes, demarcated from CSF by bright echogenic line
- Central canal: echogenic structure
- Nerve roots: echogenic

## MASS LESION LOCALISATION - Spinal

Mass Lesions characteristics:

- Cyst/syrinx- anechoic
- IM tumor- complex cystic and solid
- IM neoplasms inhomogenous hyperechoic (glioma, metastases)
- Calcifications enhance echogenicity (ependymoma, astrocytoma, dermoid)

## MASS LESION LOCALISATION- Spinal

Mass Lesions characteristics:

- Focal cord expansion and obliteration of the central canal
- Extramedullary lesions are generally hyperechoic (disk, hematoma, meningioma, neurofibroma, bone , cyst abscess)

## Spinal Uses

- Syrinx- localize site of needle insertion/ perforation
- Tumor biopsy
- Myelotomy in avascular planes
- Tumor resection

### Neuronavigation

• 3D USG : By tilting the ultrasound probe over the area of interest, a collection of 2D ultrasound images is acquired, forming a 3D ultrasound image volume

• Camera indentifies position of the patient reference frame and the US probe and enables display with corresponding preop MR

•Time taken ~ 1 min

#### Neuronavigation

Accuracy of 3D US

- Preop MR may not predict intraop brain shifts
- Image to patient registration is not needed for navigation based on intra-operative US
- Acquisition is performed in the same coordinate system as navigation is executed.
- New 3D images can be acquired in order to compensate for brain shift

## Other procedures : Biopsy

- Free hand
- USG transducer mounted biospy probe
- Diagnostic yields of 85-100% reported in literature-
- Depth and nature of pathology
- Most hyperechoic region to be chosen

## Other procedures : VP shunt

- Special burrhole transducer < 12mm diameter
- use of separate burrhole/ larger burrhole, in open fontanelle

## Cavernoma

- Hyperechogenicity
- Inhomogeneous- microcalcification, cysts, thrombosis
- Demarcation- may be be sharp (cause- iron ring)
- Difficult to identify flow in cavernoma

## Venous anomaly

- Criteria:
- slow flow (<5 cm/s)
- flow away from lesion

Other cerebrovascular parameters:

- Peak systolic flow (AVM >300 cm/s), diastolic flow
- Resistance index (<0.6- AVM)

## Other procedures : AVM

- Intra-operative 2D colour-duplex-sonography for localizing deep-seated AVMs,
- Identifying feeders and draining vessels and for re-section control
- Colour Doppler : measure the cerebrovascular resistance and differentiate between feeding vessels and en passant vessels.

## Other procedures : AVM

- Stereoscopic display or a 3D rendering of the vessels may be helpful to understand the tortuous architecture of the feeding vessels
- Image quality and details inferior to MR
- ROLE- to estimate shifts and correction and vessels of nidus

## Other procedures : Aneurysms

- 2D US for peripheral aneurysms
- Flow evaluation in distal vessels pre and post clipping (systolic flow, RI)
- PITFALL: Power Doppler of smaller vessels generates smeared image for navigation
- ROLE: not clearly defined and needs improvement

## Other procedures : decompression

- USG to assess need for duraplasty in Chiari I patients after foramen magnum decompression
- ROLE: ? Paradigm shift CSF related complications v/s No duraplasty

Recurrence rates of symptoms twice in moderate and severe cases in bony decompression only patients-

Mcgirt et al. JNS- pediatrics, July(1) 2008

# LIMITATIONS

- Operator Dependent
- Requires knowledge of neuroradiologic abnormalities that are not routinely evaluated by sonography.
- Difficulties in distinguishing a tumour from normal tissue and lesion obscuration by chronic edema.

• CT stereotaxis and real-time MRI fusion images.

- 1.5D probe
- thinner image planes at a wider depth range.
- improve the quality of both tissue imaging and angiography based on power Doppler

#### • Contrast:

- Thin-shelled micro bubbles (size~RBCs) very strong scatterers of ultrasound
- Size 1-4 um, coupled to galactose, albumin (*albunex, levenist*)
- Administered iv
- Increase signal to noise ratio

- Strain imaging:
- Elasticity of brain tissue.
- Tissue motion of arterial pulsations can US strain images of brain tumors (histologic clue)
- Adjunct to B mode
  STATUS- under evaluation

- HIFU
- Under evaluation for tumor
- MR guided

# USG AIIMS

• B- K medical, equipped with linear(vascular), burrhole, convex array

#### Surgeries

- Foramen magnum decompression
- Intracranial tumor excision
- Spinal IM tumor localization
- Biopsy

## USG - INDIA: PNDT act

- The Pre-natal Diagnostic Techniques Regulation and Prevention of Misuse) Act (1994), 1<sup>st</sup> January, 1996 enacted
- Amendment 2003
- Restricted use of USG for prenatal diagnosis of sex

